
Optimising the Epioncho
Model 

Mark Todd, CEO Dreaming Spires



Optimising the Epioncho Model 

• Brief description of the model

• How we assess sections of the model for optimisation

• Optimisations:
Optimisation 1: Array Operations
Optimisation 2: Fast Binomial
Optimisation 3: Worm Incubation

• Code Clarity

• Results



Overview of onchocerciasis population-based 
model



The people in the model are defined

People have “properties”:

Age
Gender
Individual Exposure

People are modelled as each 
containing:

Blackflies
Worms
Microfilaria 



Time moves forward

• Worms grow, are born and die

• People are born and die

• Treatment is performed

• Worms have an incubation time



Optimisation



Assessment

The profiler allowed us to:

• Identify slow sections of 
code

• Choose which functions to 
prioritise for optimisation

• Confirm speed up after 
changes



Iteration Methods

• Removal of for loop iterations, in exchange for numpy level 
vectorisation.

• Results in both clarity increase & speed up

array = np.array([1,2,3])
new_list = []
for i in array:

new_i = 2*i
new_list.append(new_i)

new_array = np.array(new_list)

Before: After:

array = np.array([1,2,3])
new_array = 2*array



Why not start with that?

• Major use case was operations over worm compartment
• The worm compartment calculation is very complex
• Each part of the calculation has to be converted to this form
• 3D/4D arrays are required



Binomials

• After the iteration method optimisation, the next slowest function 
was the sampling of binomial distributions.

• This proved challenging – the binomials were being generated by a 
part of the “numpy” library, which already uses C++. 

• This is a widely used library in python for dealing with array 
structures.

• To make the model faster, we would have to beat “numpy”.



Fast Binomial

• Step 1: Generate binomial values in bulk
By requesting more values at once it saves time on memory allocation

• Step 2: Python is slow – time for C++

• Step 3: Connect it back into python with bindings

I’d like a 
lemon!

I’d like 
another 
lemon!



Worm incubation time data storage

• Worm incubation time means we have to store values in a large array 
– prior to optimisation it worked as below:

Before After



Other Improvements

• Pytest-Trust-Random – Code changes are now identifiable

• Code clarity – Bugs are easier to spot, and functions are readable by 
people who may not be familiar with the code

• Endgame Simulations – Disease models with fixed delta time can now 
share code for how to run a model. 

• In future this could allow for shorter and more readable code bases, as well as 
more code re-use between projects.



Code Clarity

def _calc_outbound_worms(
current_worms: WormGroup,
worm_age_rate_generator: Generator,
dead_worms: WormGroup,

) -> WormGroup:
"""
Calculates the number of worms leaving each compartment due to aging.

Args:
current_worms (WormGroup): The current number of worms
worm_age_rate_generator (Generator): Generates worms at a pre-defined rate.

The rate at which worms move from one compartment to the next
dead_worms (WormGroup): Worms dying in each compartment

Returns:
WormGroup: The number of worms leaving each compartment due to aging.

"""

Clear Function Names

Docstrings
Type hints

Clear Variable Names



Results

• Order of magnitude speed up from original code

• Higher code readability

• More re-usable tools like Pytest Trust Random, Endgame Simulations



Any Questions?


